Making Thinking Visible # 4: Recognizing the need for clear learning intentions

Chapter 4 is a great resource to tap into. The routines for “Introducing and Exploring Ideas” are varied and strategically target making observations, uncovering new ideas by connecting prior knowledge, and considering problems from alternate perspectives. Some of the routines are variations of what I’m already familiar with or am currently do in the classroom, so I was reading to learn what I can add or focus on to improve student thinking.

What it really boils down to is clear learning intentions. If learning intentions solely focus on skills, we’re missing the opportunity to develop students as thinkers.

A few of the routines are described below.

The See-Think-Wonder routine, similar to I Notice…I Wonder, invites students to inquire. To maximize the benefit of the routine students may need to experience it several times in order to break through the surface level to dig deeper. My co-teacher and I used this routine to introduce exponents to our 6th graders. We showed this Best Offer video twice.

lump sum
Most students noticed a stack of money. Few noticed the money was bundled or how the bundles were labeled.
Many students saw the amount of money growing, but were puzzled with what was going on.

Using the video, students were asked whether they would prefer a lump sum payment of $50,000 or be paid exponentially, starting with two dollars. As the students experienced the routine many of their wonderings were surface level. At that point it became clear that the routine needs to be reintroduced so students have opportunities to practice digging deeper.

Another routine I enjoyed reading about was Zoom-In as it will be useful when exploring rational numbers. I’ll likely create a powerpoint to overlay a variety of rational numbers, integers, and whole numbers–attempting to connect prior knowledge with classification. The idea behind Zoom-In is to show a small section of an image and slowly zoom out, or pan from left to right, revealing other aspects of the image.

Yet another routine, the Explanation Game, piqued my interested. The goal is to elicit thinking on the parts of something. It reminded me of David Wees (@davidwees) and his collaborative efforts on the Contemplate then Calculate instructional routine which emphasizes the mathematical practice make use of structure. I’m particularly familiar with this task…

…which asks students to explore structure to find short cuts when calculating. Connecting it to the Explanation Game, students describe the features of the problem, explain their short cut, give reasons for why it works and describe alternatives.

Chapter 4 is a great reminder of existing instructional routines. What is also quite useful is each routine’s description includes its purpose, how to select appropriate content, implement or vary it–all essential when making learning intentions explicit.


Making Thinking Visible #3

A few thoughts and connections while reading chapter 3: Introducing the Thinking Routines. Thinking  routines can be used as: 1) a tool to elicit thinking (i.e. a Think-Puzzle-Explore which is related to a KWL) , 2) a structure to support student thinking (i.e. Generate-Sort-Connect-Elaborate, related to a concept map) or 3) a pattern of behavior where thinking routines are embedded in the classroom culture. When embedded the routines “build an arc of learning” throughout a unit of study.

As I learn about each of these routines in greater depth I’ll be able to explain in greater depth, but already I’ve noticed the tool and structure are closely intertwined. I’m going to take a risk and predict one way these routines would play out when students are learning factors, greatest common factor, and least common multiple.

Present the Think-Puzzle-Explore routine to reveal the level of understanding of  factors. What do you think you know about factors? What’s puzzling about factors? Let’s explore and investigate what puzzles you. I’d likely give each student a document with the prompts to record their thoughts before discussing.

In the middle of the unit prior to GCF and LCM, the Generate-Sort-Connect-Elaborate thinking routine is introduced. Here students would brainstorm identify the differences between factors and multiples. The would be done individually at first then shared and organized  with a partner. A finished product may look something like this:

thinking map

At the end of the unit perhaps the perspective taking thinking routine called Step Inside would help students distinguish between when a problem requires finding the LCM and when it requires the GCF.

I think this scenario is pretty accurate in demonstrating how thinking routines can be used as a tool, a structure, and as a pattern of behavior.

More discussion is on Twitter #eduread.

Making Thinking Visible #2

My reflection and critique of Chapter 2, Putting Thinking at the Center of the Educational Enterprise,  begins with this quote:

What kind of intellectual life are we presenting to our students in our individual classrooms and in our school as a whole? What are my students learning about learning? What messages am I sending through the opportunities I create for my students about what learning is and how learning happens? (p48)

What am I modeling in my classroom? What types of thinking occur in the classroom? As I read chapter 2 I kept relating it to the importance of having clear learning intentions. In my previous post I noted how our math classes do a fine job of identifying the specific skill to be learned, but the thinking objective is not clear–it’s left as an assumption. When it’s left as an assumption what happens in class is the teacher does all the thinking.

To make thinking visible, the first of three strategies, questioning, was introduced. One of the authors provided a scenario in which he modeled the questioning strategy to a group of teachers. Having a strategic list of questions–knowing how you are going to direct the learning–is crucial. Yet when the teachers implemented the strategy, they reported students were not responding with higher levels of thinking. The teachers neglected to listen deeply and ask follow up questions. Listening, strategy #2, was explained in depth using this scenario.

Be it anecdotal records, formative assessments, whiteboard work, photos, videos, etc.–any artifact can serve to document (strategy #3) student thinking and be used to advance learning.

I’m not sure it this will be elaborated upon on in later chapters, but I’m looking to read about balancing surface and deep level thinking–juggling when to take students into the deep end and when to stay in shallow waters. I’m certain that depends on the individual student. The reason for my raising the issue is thinking deeply is serious mental exercise. Students need to develop the mental stamina, so perhaps a  variety of thinking activities is in order.

I do believe students need to see their teachers as authentic thinkers and learners as well. Case in point, towards the end of the school year a colleague and I were wordsmithing a conference proposal. This was taking place in the colleague’s classroom, after school, with a student present. At the end of our lengthy discussion the student remarked it was the first time he had seen adults struggle as much as kids do.

Continue the conversation on Twitter at #eduread.

Also check out key quotes found on this post.


Making Thinking Visible Chapter 1 takeaways

After reading Ritchart, Church and Morrison’s first chapter of Making Thinking Visible, here are some takeaways:

Chapter 1: Unpacking Thinking

“What kinds of thinking do you value and want to promote in your classroom?” What kinds of thinking does that lesson force students to do?” These two thinking questions are at the heart of Making Thinking Visible.

Every time I annotated or highlighted a takeaway from Chapter 1 I critiqued my practice. For example, “…understanding is not a precursor to application, analysis, evaluating, and creating but a result of it.” I noted how this belief can lead to greater access and equity, After all you don’t have to be fluent with your math facts to solve complex problems. I also thought about how our math team sometimes schedules a group work task at the end of the unit—after the students have completed a string of procedural problems. Often times a task at the end limits the student’s opportunity to think.

Another quote from Chapter 1: “In most school settings, educators have focused more on the completion of work and assignments than on a true development of understanding.” I kept thinking about Michael Pershan’s relentless pursuit of analyzing student work and making sense of it. I also thought about this in terms of our PLCs. We can do a better job of collaborating to improve student learning by studying student work.

I also noted that our lesson objectives do a fine job of articulating what students will be able to do from a procedural standpoint, “I will be able to convert between fractions, decimals, and percents” but the thinking piece needs to be clearly defined. The book’s eight high leverage thinking moves, were previewed and I’m looking forward to studying them at length.

  1. Observe closely and describe what’s there.
  2. Build explanations and interpretations.
  3. Reason with evidence.
  4. Make connections.
  5. Consider different viewpoints and perspectives.
  6. Capture the heart and form conclusions.
  7. Wonder and ask questions.
  8. Uncover complexity – go below surface learning.

I’m also interested in discussing Bridget Dunbar’s comment about metacognition.


Pam Wilson’s post does a fine job of capturing the salient points of Chapter 1. Check it out and join the conversation on twitter using the #eduread and #makethinkvis hashtags.